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Abstract: Due to its essential role in calcium and phosphate homeostasis, the secosteroid hormone
calcitriol has received growing attention over the last few years. Calcitriol, like other steroid hormones,
may function through both genomic and non-genomic mechanisms. In the traditional function, the
interaction between the biologically active form of vitamin D and the vitamin D receptor (VDR) affects the
transcription of thousands of genes by binding to repeated sequences present in their promoter region,
named vitamin D-responsive elements (VDREs). Non-transcriptional effects, on the other hand, occur
quickly and are unaffected by inhibitors of transcription and protein synthesis. Recently, calcifediol, the
immediate precursor metabolite of calcitriol, has also been shown to bind to the VDR with weaker affinity
than calcitriol, thus exerting gene-regulatory properties. Moreover, calcifediol may also trigger rapid
non-genomic responses through its interaction with specific membrane vitamin D receptors. Membrane-
associated VDR (mVDR) and protein disulfide isomerase family A member 3 (Pdia3) are the best-studied
candidates for mediating these rapid responses to vitamin D metabolites. This paper provides an overview
of the calcifediol-related mechanisms of action, which may help to better understand the vitamin D
endocrine system and to identify new therapeutic targets that could be important for treating diseases
closely associated with vitamin D deficiency.

Keywords: vitamin D; calcitriol; calcifediol; genomic actions; non-genomic actions; vitamin D
receptor; membrane-associated rapid response to steroid; vitamin D deficiency

1. Introduction

Vitamin D is found in virtually every form of life, from phytoplankton to humans,
and is thought to be one of the oldest hormones on Earth [1]. Originally, vitamin D was
defined as a vitamin because it could be obtained from food sources, mainly fatty fish, fish
oils, dairy products, and some mushrooms.

Dietary vitamin D (vitamin D2 or D3) is normally absorbed by the small intestine along
with other dietary fats [2]. The presence of fat in the intestinal lumen triggers the release of
bile acids, which initiate emulsification and help to form lipid-containing micelles [3]. After
ingestion, exogenous vitamin D is packaged into chylomicrons for transport to the liver.
Part of the vitamin D contained in chylomicrons can be absorbed by adipose tissue and
skeletal muscle [4]. Once the residual chylomicrons reach the liver, a vitamin D-binding
protein (DBP) allows them to enter the liver cells, which then facilitates their transport to
the various tissues that need them.

However, for humans, the photochemical production of 7-dehydrocholesterol (7-DHC)
is the most important natural source of vitamin D that takes place in the basal layer of the
epidermis in the skin [5]. In particular, the β-ring photodegradation of 7-DHC stimulated
by solar ultraviolet type B (UVB) photon irradiation (around 280 to 320 nm) results in the
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production of previtamin D3 that undergoes a thermal isomerization to form vitamin D3
(or cholecalciferol) or alternatively photoconverted in two nonactive forms, such as tachys-
terol and lumisterol [6,7]. Following release from the cells, vitamin D3 enters circulation
and is transported in the circulation bound to a vitamin D-binding protein (DBP) to storage
tissues or the liver [8,9]. In the hepatocytes, vitamin D3 is rapidly hydroxylated at the
C-25 position by 25-hydroxylase, a cytochrome P450 enzyme (mainly the CYP2R1), thus
producing calcifediol or calcidiol (25(OH)D3). Once synthesized, DBP-bound 25(OH)D3 is
secreted into the blood and transported to the kidney to obtain the biologically active form
calcitriol (1α,25(OH)2D3) (Figure 1).
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The average plasma half-life of 25(OH)D3 is approximately between 20 and 24 days,
the highest compared to other vitamin D metabolites [10]. Therefore, the measurement
of 25(OH)D3 is the gold standard method to determine the body’s vitamin D storage and
status. To be exact, 25(OH)D3 is 1α-hydroxylated by another CYP450-dependent system
activity (CYP27B1) in the mitochondria of the proximal convoluted tubule cells [11]. This re-
action is closely regulated by blood phosphate and calcium levels through fibroblast growth
factor 23 (FGF-23) and parathyroid hormone (PTH). Calcitriol is involved in the regulation
of plasma concentrations of ionized calcium and phosphate by modulating their renal
excretion, intestinal absorption, and calcium bone mobilization. If levels of 1α,25(OH)2D3
rise, calcitriol induces its degradation by stimulating the expression of 24-hydroxylase
(CYP24A1), which is also responsible for the catabolism of 25(OH)D3 [8,10]. Generally,
the 24-hydroxylation reaction is followed by several oxidation reactions and sometimes
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the conjugation with glucuronic acid to form many compounds that are excreted through
the bile [8]. Under low serum calcium conditions, the parathyroid glands secrete PTH,
which stimulates the expression of 1α-hydroxylase, leading to enhanced 1α,25(OH)2D3
activation [12]. PTH also inhibits 24-hydroxylase and induces the synthesis of FGF-23 by
osteoclasts and osteocytes, which acts to reduce the expression of renal sodium phosphate
transporter [13,14]. FGF-23 can also regulate vitamin D homeostasis by inhibiting renal ex-
pression of 1α-hydroxylase and inducing 24-hydroxylase, thereby reducing serum calcitriol
levels, which in turn reduce serum calcium levels in hyperphosphatemic conditions [15].

The human population is currently experiencing a high prevalence of moderate to
severe vitamin D deficiency, which has detrimental effects on musculoskeletal and extra-
skeletal systems. There is a general but not unanimous consensus that 25(OH)D3 levels
<20 ng/mL are inadequate for maintaining musculoskeletal health, leading to rickets in
children, osteomalacia in adults, and secondary hyperparathyroidism, while no serum
25(OH)D3 concentration is recommended for extra-skeletal health outcomes [16].

Based on more than 500 studies worldwide, 88% of the world’s population have serum
25(OH)D3 levels <30 ng/mL, approximately 37% have values below 20 ng/mL, and about
7% have levels below 12 ng/mL [17]. Moreover, there are some groups or regions whose
prevalence of vitamin D deficiency is higher.

The causes of vitamin D deficiency are varied and include limited sunlight exposure,
sunscreen use, inadequate intake of foods containing vitamin D, dark skin pigmentation,
patients with intestinal malabsorption syndromes, genetic diseases of vitamin D metaboliz-
ing enzymes or the vitamin D receptor (VDR), drugs that can interfere with the vitamin
D absorption or metabolism, hepatic disease, obesity, aging, and renal disease [18,19]. On
this latter aspect, approximately 80% of chronic kidney disease (CKD) patients have a high
prevalence of vitamin D deficiency/insufficiency. Considering the extra-renal expression of
1α-hydroxylase, increasing interest was placed on vitamin D supplementation, including
vitamin D2, vitamin D3, and 25(OH)D3, highlighting the importance of peripheral produc-
tion of calcitriol. Despite the Italian Society of Nephrology (SIN) having already published
a series of guidelines about vitamin D in CKD patients in 2016, indicating to supplement
patients with CKD stages 3–5 and serum 25(OH)D3 concentration <30 ng/mL, the risk
of toxicity should always be monitored, including adverse health effects associated with
hypervitaminosis D, such as hyperphosphatasemia and hypercalcemia [20].

There are only a limited number of strategies to prevent or correct hypovitaminosis
D. Increasing sun time exposure could, on the one hand, increase the skin synthesis of
vitamin D, but on the other hand, considering that UVB is also photocarcinogen, it is
not advisable to recommend a greater time exposure to sun, especially for those peo-
ple with higher sensitivity to DNA [21]. In this light, it is well established that most
dermatologists recommend avoiding long-term exposure to UVB light to prevent the de-
velopment of long-term consequences, such as skin cancer. Furthermore, there are other
limitations to implementing this strategy in real life, such as climatic circumstances, skin
color, lifestyle, and cultural and religious habits [22]. Another option could be to increase
the consumption of vitamin D-containing foods, but this is not feasible because there are
no sufficient oils from fish in the ocean, one of the major dietary sources of vitamin D,
to correct vitamin D deficiency status around the world. A good strategy is the intake
of vitamin D- or calcifediol-fortified foods, and it has been successfully implemented in
many northern European countries such as Finland [23]. However, this option becomes
less effective in populations with a great variety of food preferences. Since the discovery of
vitamin D, vitamin D supplementation has been a widely used valid strategy to prevent
or correct such deficiency. The preferred compound globally used is vitamin D3, even
though vitamin D2 is the vitamin D supplement of choice in the USA for the Steenbock
patent and India because cholecalciferol is from animal origin [24,25]. Apart from these
metabolites, even calcifediol has been considered as an oral vitamin D supplement to help
people who are more likely to acquire hypovitaminosis D [26]. Based on Italian guidelines
(https://www.aifa.gov.it/en/nota-96 (accessed on 29 September 2023)), the recommended
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dosage regimens for calcifediol and vitamin D3 depend on the individual’s vitamin D status.
In particular, an intake of 266 µg of calcifediol twice per month is recommended when
serum 25(OH)D3 concentration is lower than 30 nmol/L. In a range of serum 25(OH)D3
concentration between 30 and 50 nmol/L, the recommended dosage for calcifediol is
266 µg once a month, while no vitamin D supplementation is generally not needed for
those people with vitamin D blood levels above 50 nmol/L.

The main function of vitamin D is to regulate calcium–phosphate homeostasis, thereby
contributing to maintaining proper bone health. The calciotropic hormone calcitriol func-
tions as a steroid by binding to the intracellular VDR [27], a member of the steroid nuclear
receptor superfamily, which includes retinoic acid, thyroid hormone, adrenal steroids, and
sex hormones. This binding results in the modulation (suppression or activation) of gene
expression [10,28–31].

Given that the presence of VDR is well documented in the cells of various organs, it has
been established that the proper functioning of musculoskeletal, nervous, cardiovascular,
and immune systems is strongly dependent on vitamin D [6,28]. Therefore, vitamin D
deficiency status was not only described as a risk factor associated with the occurrence
of rickets or osteoporosis [32] but also with the altered function of the immune system
and the ability to mobilize a response to invading pathogens, including influenza and
SARS-CoV-2 [33]. Over the last decade, it has been reported that vitamin D has a role
in brain development and function [34]. Furthermore, it was suggested that levels of
serum 25(OH)D3 in the range of 40 to 60 ng/mL are beneficial, reducing the occurrence
and aggressiveness of several types of cancer [35] and showing cardioprotective [36] and
neuroprotective [37] properties.

The biological effects of 1α,25(OH)2D3, like other steroid hormones, are mediated via
both genomic and non-genomic mechanisms. Recently, 25(OH)D3 has been demonstrated
to affect the expression of genes as well as to trigger non-genomic responses through its
interaction with distinct membrane-associated, rapid-response steroid-binding receptors
(MAARS) [22,38–40]. In this narrative review, we will provide an overview of the calcifediol-
related mechanisms of action, which may help to better understand the vitamin D endocrine
system and to identify new therapeutic targets that could be important for treating diseases
closely associated with vitamin D deficiency.

2. Vitamin D Classical Actions: Regulation of Calcium and Phosphate Homeostasis

Calcitriol serves as one of the primary regulators of serum calcium levels within
the optimal range by directly acting on three target tissues. Moreover, 1α,25(OH)2D3
suppresses parathyroid gene expression and parathyroid cell proliferation via the VDR,
emphasizing its direct action on enhancing serum calcium levels [41].

One of the target organs is the intestine, where 1α,25(OH)2D3 stimulates intestinal
calcium absorption [2]. This effect depends on the presence of dietary calcium, its intestinal
solubility, and intestinal absorptive capacity as a result of the balance between transcellular
and paracellular intestinal absorption. Transcellular transport involves three parts: calcium
entry through specific calcium channels in the brush border membrane, intracellular trans-
port through calbindin, and active calcium transport to the bloodstream on the basolateral
surface, mainly via specific carriers.

The second organ is the kidney, in which both 1α,25(OH)2D3 and PTH promotes calcium
reabsorption in the distal renal tubules [15]. Calcitriol affects (I) calcium entry through the
apical membrane, (II) calcium diffusion mediated by calbamicin, and (III) active transport across
the basolateral membrane. In addition, vitamin D inhibits phosphate reabsorption directly by
inducing α-klotho and indirectly by enhancing FGF-23 osteocyte expression.

In the bones, 1α,25(OH)2D3 promotes the release of calcium from bone in a process re-
quiring PTH [42]. In particular, the PTH-dependent calcitriol activation, as a consequence of
the decreased serum calcium levels, stimulates the VDR-mediated formation and differenti-
ation of osteoclasts. This activation results in the increase of skeletal calcium mobilization
by stimulating the receptor activator for nuclear factor kappa-B ligand (RANKL) secre-
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tion, which, in turn, is a potent stimulator of osteoclastogenesis and bone resorption [43].
Moreover, vitamin D suppresses mineralization by enhancing pyrophosphate levels and
osteopontin [44]. Therefore, vitamin D deficiency can lead to inadequate mineralization of
the skeleton, thereby contributing to osteoporosis and fractures [45,46].

3. Vitamin D Molecular Actions
3.1. Genomic Response of Calcitriol

The secosteroid 1α,25(OH)2D3 is a calciotropic hormone that functions as a steroid
molecule by its interaction with the intracellular VDR [27]. The VDR gene, which consists
of eight coding exons, is found in fish, birds, and mammals and encodes a protein of
427 amino acid residues [47,48]. The two functional domains of the VDR are the conserved
NH2-terminal DNA-binding domain named DBD and a highly variable COOH-terminal
ligand-binding domain named LBD [22]. Calcitriol binding triggers conformational change,
resulting in the dissociation of the repressor protein, thus promoting the dimerization of
VDR to form either homodimers or heterodimers with retinoid X receptor (RXR) [10]. Once
dimerized, both complexes (homo- and heterodimeric) bind to repeated sequences generally
positioned in the physical proximity of transcription start site specifical of vitamin D-target
genes named vitamin-D-responsive elements (VDREs) to regulate negatively or positively
their expression [49]. Association of 1α,25(OH)2D3:VDR:RXR with the VDREs leads to the
recruitment of coactivators that have histone acetylase activity, affecting the binding affinity
of hystone proteins and DNA [50]. Furthermore, this large complex functions by recruiting
RNA polymerase II enzyme to the transcription start site, thereby regulating the transcription of
different genes involved in the control of calcium homeostasis (i.e., alkaline phosphatase (ALP),
cytochrome P450 family (CYP450) 24 (CYP24), type I collagen (COL1A1), PTH, osteopontin,
osteocalcin (bone gamma-carboxyglutamate protein (BGLAP), and transient receptor potential
vanilloid type family member 6 (TRPV6)) [10,28–31,50]. The increase or decrease in protein
expression levels caused by gene transcription regulation from steroid hormones is the result of
their genomic actions. The timing of these actions is not immediate but rather delayed, as they
take time for newly synthesized proteins and processing.

The totality of the above-mentioned transcriptional complexes defines the sensitivity
and specificity of the various steroid hormones, including vitamin D [50]. In particular,
the physiological response specificity is determined by the 1α,25(OH)2D3. The genetic
specificity is guided by the VDRE. The cell or tissue specificity of the response depends on
the different proteins recruited following the binding of 1α,25(OH)2D3-VDR-RXR to the
VDRE. Finally, the biological response is caused by the activity of the vitamin D-responsive
gene product.

25(OH)D3-Related Genomic Responses

Calcitriol is the only high-affinity (KD = 0.1 nM) ligand of the VDR [51], whereas the
receptor affinity for 25(OH)D3 is 100- to 1000 times lower [52]. This discrepancy could be
explained by the fact that 25(OH)D3 is missing a 1-OH-group, while generally the specific
binding within the VDR’s LBD pocket is achieved through interactions between a pair of
polar amino acids and the three hydroxyl groups of 1,25(OH)2D3 (i.e., R274 and S237 bind the
1-OH-group, Y143 and S278 the 3-OH-group, and H305 and H397 the 25-OH-group) [53,54].
Nevertheless, the serum levels of 25(OH)D3 (50–250 nM) are 1000-fold higher compared to those
of 1,25(OH)2D3 (0.05–0.15 nM), and therefore its levels should be enough for effective binding
and to act as an agonistic VDR ligand [55,56].

As high levels of 25(OH)D3 are found in serum, blood cells are one the best experimental
systems for investigating a possible gene regulatory function of 25(OH)D3. A study carried out
by Hanel et al. [40] demonstrated that higher concentrations of 25(OH)D3, such as 1 µM and
10 µM nM, affect gene expression in peripheral blood mononuclear cells (PBMCs) isolated from
five healthy individuals in a comparable way observed with 10 nM 1,25(OH)2D3. Among the
398 targets of 1 µM 25(OH)D3, approximately 86% also responded to 1,25(OH)2D3 in PBMCs,
while the rate for the 477 target genes of 10 µM 25(OH)D3 was 78.0%. However, only two
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genes, MYLIP and ABCG1, both involved in cholesterol transport, were specifically regulated by
10 µM 25(OH)D3.

In a subsequent study from the same research group [39], the authors found that
the vitamin D metabolites 25(OH)D3 and 25(OH)D2 are equally able to directly modulate
vitamin D-target gene expression, as well as 1,25(OH)2D3, the most potent VDR ligand, even
though higher concentrations of 300 nM are required to observe these 25(OH)D-associated
genomic responses.

Overall, these findings suggest that 25(OH)D3 within the physiological range
(100–250 nM) does not affect gene expression, even though higher concentrations trig-
ger such responses, although it is not to be excluded that the enzymatic formation of
1,25(OH)2D3 could partially contribute to modulate the transcriptome of PBMCs. This
option cannot be excluded because these cells show reduced but significant expression
levels of the CYP27B1 gene.

A similar expression pattern was also found in the prostate cancer cell line LNCaP [57].
The intriguing finding is that the metallothionein 2A gene was found to be a distinct

target for 1,25(OH)2D3 but not for 25(OH)D3 [58]. Moreover, it is conceivable that the
transcription factors encoded by genes activated by 1,25(OH)2D3 could, in turn, modulate
the expression of additional gene sets [59], which could be defined as a secondary genomic
response, even though this mechanism must still be defined even for 25(OH)D3.

3.2. Rapid Non-Genomic Actions

In 1942, Hans Selye described that progesterone showed an anesthetic effect immedi-
ately after peritoneum injection in rodents, which was different from what was observed
with regard to its primary function, which occurred only within hours after its adminis-
tration [60]. This is the first report of non-genomic actions mediated by steroid molecules.
Then, Spach and Streeten showed that Na+ ions changed within a few minutes after
the administration of aldosterone in dog erythrocytes, providing novel compelling evi-
dence for the aldosterone-related non-genomic effects precisely for the absence of nuclei in
these cells [61]. However, these non-transcriptional effects were not known until recently,
when different rapid responses were recognized for various steroid hormones, including
1α,25(OH)2D3 [62].

In spite of the genomic counterpart, non-genomic rapid effects can be observed within
seconds or minutes after stimulation, without the need for activation of gene expression
and de novo subsequent protein synthesis. In this regard, these rapid mechanisms are
not susceptible to molecules that inhibit the genomic effects, such as cycloheximide or
actinomycin D, and also occur in response to steroids coupled to large proteins that do not
allow their entry into the cells [29].

3.2.1. Membrane-Associated Proteins and Targets for Vitamin D-Mediated
Non-Genomic Responses

The idea of the existence of alternative non-genomic pathways activated by vitamin
D was conceived by the pioneering studies of Nemere and colleagues in 1984 [63], who
observed that 1α,25(OH)2D3 induced a rapid influx of intracellular calcium either by
promoting its release from intracellular compartments or by improving the intestinal
absorption in vascularly perfused duodenum from normal, vitamin D-replete chicks. This
rapid influx of calcium within 14 min in response to 1α,25(OH)2D3 in a mechanism of
genome activation- and protein synthesis-independent was named transcaltachia.

According to the time frame and the insensitivity of non-genomic responses to
transcription and translation inhibitors, it was supposed that 1α,25(OH)2D3 triggers
non-transcriptional effects by interacting with intracellular and membrane-associated
macromolecules. This idea was corroborated by the observation that several secondary
messengers were produced in response to 1α,25(OH)2D3, such as phosphatidylinositol
(3,4,5)-trisphosphate (PIP3), calcium, and cyclic AMP (cAMP), culminating in a successful
downstream activation of different protein kinases (PKs) (PKC, mitogen-activated protein
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(MAP) kinases, calcium/calmodulin-dependent protein kinase II gamma (CaMKIIG), and
Src) [64–68]. Moreover, this secosteroid was also described to mediate the opening of
calcium, chloride, and phosphate ion channels.

Several studies demonstrated that 1α,25(OH)2D3 interacts with the membrane isoform
VDR (mVDR) associated with caveolin-1 (CAV1) and non-classical MAARS, resulting in
fast non-genomic responses to vitamin D [69–71].

The existence of a distinct mVDR serving as the mediator of vitamin D-associated non-
genomic signaling was described for the first time by the early studies of Norman et al. [69,70].
In this study, the authors observed that 1α,25(OH)2D3 in its 6-s-cis configuration was able to
trigger rapid non-transcriptional responses, while the 6-s-trans configuration mediated the
genomic responses.

Interestingly, the activation of at least some 1α,25(OH)2D3-induced non-genomic
effects was displayed to be mVDR-dependent, such as the activation of SRC proto-oncogene
non-receptor tyrosine kinase, and the regulation of several signaling pathways, such as
Notch [72–74], sonic hedgehog (Shh) [75–80], and Wnt [81–84].

Another remarkable non-genomic activity of 1α,25(OH)2D3 was observed on models
of adenosine diphosphate (ADP)- or collagen-induced platelet aggregation. Here, the
authors [85] found that 1α,25(OH)2D3 had an inhibitory effect on platelet aggregation,
which varied according to the state of diabetes. In particular, glycemic control was inversely
and significantly associated with high platelet aggregation and reduced 25(OH)D3 levels.
The absence of a nucleus and the presence of VDR in platelets indicated that this mechanism
should be the outcome of the activation of non-genomic pathways.

Baran and colleagues [86] showed that 1α,25(OH)2D3 not only induced a rapid opening
of calcium channels but also promoted a rapid activation of phospholipase C (PLC) in ROS
24/1 cells lacking VDR, indicating that these effects do not require the VDR involvement.
The same finding was also validated in cultured costochondral chondrocytes derived
from VDR−/− mice, where Boyan et al. [87] found that 1α,25(OH)2D3 was involved in the
regulation of PKC activity.

This suggests that in addition to the presence of mVDR, the existence of other mem-
brane receptors together with vitamin D could be essential for rapid non-genomic in
response to 1α,25(OH)2D3.

One of the best characterized membrane-associated proteins was described in the
above-mentioned study of Nemere et al. [63], who originally reported not only the ability of
1α,25(OH)2D3 to induce transcaltachia but also the purification of a plasmalemma receptor
able to bind to the radiolabeled 1α,25(OH)2D3, with a KD-value of 0.72 nM. Later, this
protein was termed protein disulfide isomerase family A member 3 (Pdia3) [88,89]. This
protein interacts with two known molecular chaperones, calreticulin (CALR) and calnexin
(CANX), playing a crucial role in the correct folding and export of newly synthesized
glycoproteins [90]. Aside from cell membrane localization, Pdia 3 was also identified in
mitochondria, cytosol, and nucleus, suggesting its involvement in different biological func-
tions, such as cell protection from the ROS-induced damaging effects and the prevention
of disorders associated with the accumulation of misfolded proteins [91]. The interac-
tion between Pdia3 and 1α,25(OH)2D3 could also be an important protective mechanism
against UV-driven DNA damage [92]. This response was associated with the activation of
VDR-independent of the PKC signaling transduction pathway [93] and a rapid rise in in-
tracellular calcium concentrations [94]. Further investigations have demonstrated that
Pdia3-1α,25(OH)2D3 binding could be involved in the activation of PLA2 via PLA2-
activating protein (PLAA) [71], MAPK1, and MAPK2 via the regulation of
calcium/calmodulin-dependent protein kinase II gamma (CaMKIIG), PLA2, PLC, and
PKC [65,95], and Wnt family member 5A (Wnt5A) [96].

Collectively, these findings pointed out that Pdia3 is essential for mediating the rapid
non-genomics in response to vitamin D. Furthermore, some groups also suggested the
nuclear localization of Pdia3, even though there is an ongoing debate about whether
the secosteroid 1α,25(OH)2D3 could influence Pdia3 translocation into the nucleus and
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if the latter could act as a transcription factor or could promote the recruiting of other
transcription factors [97].

3.2.2. 25(OH)D3-Related Non-Genomic Responses

Calcifediol was, for a long time, recognized to be only a prohormone, a precursor of
the biologically active form of vitamin D activated by the 1α-hydroxylation that takes place
in proximal convoluted tubules of the kidney. As previously discussed in this review, recent
evidence demonstrated that 25(OH)D3 interacts with VDR with a lower affinity (about
50 times) respect than 1α,25(OH)2D3.

Given the ability of 25(OH)D3 to join with the VDR, we [38] supposed that 25(OH)D3
could exert a fast non-genomic response, such as a sustained increase of intracellular calcium
concentrations, in mesenchymal stem cells derived from human adipose tissue (hADMSCs),
earlier depicted as an excellent cell model system for investigating the secosteroid hormone
1α,25(OH)2D3-related effects. We found out for the first time that 25(OH)D3 increases intracellu-
lar calcium levels in hADMSCs at much higher concentrations generally present in the human
body (nanomolar range). As previously reported for the 25(OH)D3-related genomic effects, this
could be the result of the reduced binding affinity of this vitamin D metabolite for VDR.

This finding was consistent with the non-genomic rapid effects of 25(OH)D3 in human
spermatozoa, where Blomberg Jensen, M. et al. [98,99] showed that the immediate precursor
of 1α,25(OH)2D3 was incapable of affecting calcium levels within the subnanomolar range,
while a sustained but delayed intracellular calcium concentration rise was observed in
human spermatozoa in response to of 25(OH)D3 at higher concentrations.

Interestingly, 25(OH)D3 was also found to regulate lipogenesis via a VDR-independent
non-genomic effect that involved the processing and degradation of sterol regulatory
element-binding protein (SREBP) cleavage-activating protein (SCAP) in the endoplasmic
reticulum [100]. This intriguing observation could have a physiological significance in
reducing the risk of metabolic syndrome-associated complications, in which an inverse
correlation between serum 25(OH)D3 levels and severity was observed.

The disruption of endothelial integrity and the intensification of vascular ruptures have
been shown to be implicated in pathogenic conditions, which can be prevented by adequate
intake of vitamin D and its derivates. In addition to the canonical transcription-mediated
vitamin D pathway, data showed that vitamin D3-related non-genomic responses could play
an essential in maintaining both epithelial and endothelial cell stability [101]. Thus, vitamin
D deficiency could impair the body’s protective systems, resulting in the leakage of vascular
fluid and worsening infections, ultimately leading to septicaemia [101]. Hence, the fast, non-
transcriptional functions mediated by vitamin D might aid in the resolution of inflammation
and infections and keep the endothelial junction integrity. As a result, deficiency in vitamin D
could increase the vulnerability and the severity of infections and chronic diseases, which can
lead to increased complications incidence rate and early death [102].

4. Discussion

The vitamin D endocrine system has been recognized as an essential part of the control
of body calcium and phosphate levels, which facilitate adequate muscle performance,
bone growth, and mineralization. These activities result from the activation of the VDR in
intestinal, bone, and renal tissues by 1α,25(OH)2D3, primarily through direct interactions
between 1α,25(OH)2D3-activated VDR and chromatin. Furthermore, it is now well-known
that 1α,25(OH)2D3 has biological effects that do not involve gene transcription, which
include the regulation of intracellular calcium as well as the activation of several signaling
pathways via PKs and phosphatases [50].

More recently, studies showed that 25(OH)D3, the direct precursor of 1α,25(OH)2D3, can
not only able to activate genomic responses but also modulate rapid non-genomic actions.

As described in this review, although the affinity of VDR for 25(OH)D3 is
100- to 1000-times lower compared to 1α,25(OH)2D3 [52], due both to a larger ligand-
binding pocket and the absence of a 1-OH-group in the major circulating form of vitamin D,
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25(OH)D3 is able to affect gene expression at concentrations higher than the physiological
range. Moreover, a similar expression gene pattern was found between 25(OH)D3 and
1α,25(OH)2D3 either in the transcriptome of PBMCs and LNCaP [39,40,57]. Recently, it has
been demonstrated that 1,25(OH)2D3 exerts regulatory effects on microRNA expression and
long non-coding RNAs, potentially serving as a potential anticancer mechanism [103,104].
In this regard, no evidence has been established for the 25(OH)D3-induced regulation of
these classes of non-coding RNA so far.

Furthermore, there is increasing evidence that 25(OH)D3 can also induce rapid, non-
genomic activities, although their impact on physiological processes has not been clarified
yet. In this regard, one of the possible physiological implications of the 25(OH)D3-mediated
rapid non-genomic effect is the direct control of lipogenesis via a VDR-independent mech-
anism that involves the degradation of SCAP in the endoplasmic reticulum [100]. These
findings could provide important clinical implications for alternative pathways activated
by 25(OH)D3 to reduce the risk of complications associated with metabolic syndromes.
Another clinical implication of 25(OH)D3-induced signaling pathways is the maintenance
of epithelial and endothelial cell stability, which could be relevant for reducing the suscep-
tibility and severity of chronic diseases associated with reduced levels of vitamin D. As
reported in our previous study, 25(OH)D3 is able to increase intracellular calcium levels
in hADMSCs here, similarly to what observed for the biologically active form of vitamin
D. The rapid 1α,25(OH)2D3-induced stimulation of intestinal calcium is one of the most
noticeable non-genomic effects of vitamin D, which serves to regulate the calcium level in
the body [6,22]. However, additional studies are needed to provide conclusive evidence of
the implications of such rapid action on meal feeding and calcium absorption physiology.
Moreover, there is a growing body of evidence indicating that the rapid and non-genomic re-
sponses have the potential to both positively and negatively impact genomic functions [22].
This finding was demonstrated for 1α,25(OH)2D3, revealing that this secosteroid hormone
can activate different signaling molecules involved in several signaling pathways, such
as PI3K, PLC, and PLA2, thus affecting gene expression via primary regulatory elements
of gene expression or using activated as a substrate. Furthermore, this interplay could
influence both the effectiveness and the strength of gene regulation.

The field of vitamin D has made considerable advancements over the last years, ex-
panding its understanding beyond the previously reported role in calcium regulation
and rickets and osteomalacia prevention, respectively, in children and adults. Unfortu-
nately, vitamin D-mediated non-genomic mechanisms are still not fully understood, and
further studies are needed to reveal their functions in physiology, pathology, and clinical
application potential. Although few studies are available in the literature on this field, a
growing body of evidence has shown that 25(OH)D3 is an agonistic VDR ligand providing
elucidation both for the direct gene regulatory properties and membrane non-genomic
responses that have been defined for this vitamin D metabolite (Figure 2). Therefore, studies
aiming to improve our understanding of the vitamin D endocrine system could be crucial
to developing approaches for the prevention and treatment of chronic pathologies linked
with suboptimal vitamin D status.
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